Lennard-Jones fluid simulation website

3. SAT-TMMC: Liquid-vapor coexistence properties

Liquid-vapor coexistence properties obtained by grand-canonical transition-matrix Monte Carlo and histogram re-weighting over the reduced temperature range 0.70 to 1.20 at increments of 0.05. Mean values and standard deviations of the saturation pressure, density, potential energy per molecule, and activity (chemical potential- see below) for each phase are reported.

METHOD: Grand-canonical transition-matrix Monte Carlo [1] and histogram re-weighting
V/σ3: 512
TRUNCATION: 3σ + standard long range corrections
Prob. of Disp. Move: 0.75
Prob, of Ins/Del. Move: 0.25
Biasing Function Update Frequency
1.0E6 trials
Simulation Length: 8.0E9 trials

Liquid-Vapor Phase Coexistence Properties:
 
T* ρvap*
+/- ρliq* +/- psat* +/- Uvap* +/- Uliq* +/- ln zsat +/-
0.70 1.99600E-03 1.42E-06 8.43739E-01 2.15E-04 1.36959E-03 9.51E-07 -2.50042E-02 3.32E-05 -6.10256E+00 1.83E-03 -6.25715E+00 4.64E-04
0.75 3.62958E-03 1.05E-06 8.21911E-01 2.68E-04 2.63525E-03 6.61E-07 -4.24954E-02 2.12E-05 -5.90799E+00 1.73E-03 -5.68312E+00 4.31E-04
0.80 6.09962E-03 2.70E-06 7.99867E-01 2.70E-04 4.64539E-03 1.29E-06 -6.75763E-02 6.18E-05 -5.71605E+00 1.87E-03 -5.19614E+00 3.53E-04
0.85 9.64024E-03 2.73E-06 7.76854E-01 2.62E-04 7.63583E-03 1.77E-06 -1.01924E-01 5.45E-05 -5.51841E+00 1.98E-03 -4.77887E+00 6.41E-05
0.90 1.45128E-02 3.91E-06 7.52806E-01 1.19E-04 1.18493E-02 2.17E-06 -1.47396E-01 3.70E-05 -5.31647E+00 9.20E-04 -4.41897E+00 3.02E-05
0.95 2.10228E-02 5.63E-06 7.27724E-01 2.03E-04 1.75374E-02 3.71E-06 -2.06003E-01 8.41E-05 -5.11032E+00 1.57E-03 -4.10680E+00 1.55E-04
1.00 2.95686E-02 7.33E-06 7.01018E-01 9.55E-05 2.49576E-02 4.83E-06 -2.80550E-01 1.13E-04 -4.89568E+00 4.10E-04 -3.83428E+00 1.11E-04
1.05 4.06547E-02 9.12E-06 6.72152E-01 1.14E-04 3.43602E-02 6.93E-06 -3.74433E-01 7.62E-05 -4.66955E+00 6.91E-04 -3.59507E+00 9.92E-05
1.10 5.50768E-02 8.88E-06 6.40799E-01 1.19E-04 4.60204E-02 6.58E-06 -4.93412E-01 1.40E-04 -4.43069E+00 9.16E-04 -3.38410E+00 7.07E-05
1.15 7.41176E-02 8.93E-06 6.05204E-01 9.15E-05 6.02112E-02 7.40E-06 -6.46777E-01 1.45E-04 -4.16818E+00 6.97E-04 -3.19707E+00 5.92E-05
1.20 1.00339E-01 3.00E-05 5.63158E-01 5.22E-05 7.72251E-02 1.42E-05 -8.55172E-01 2.95E-04 -3.87120E+00 4.56E-04 -3.03072E+00 7.61E-05




Remarks:

Uncertainties were obtained from 5 independent simulations and represent 67% confidence limits (one standard deviation). Liquid-vapor coexistence was determined by adjusting the activity such that the pressures of the liquid and vapor phases were equal. Here, the pressure is not the conventional virial pressure [2, 3] but is the actual thermodynamic pressure, based on the fact that the absolute free energies can be obtained from the distributions determined from simulation [4]. Alternative methods, for example Gibbs-ensemble Monte Carlo and combination grand-canonical Monte Carlo and histogram re-weighting, can be used to determine liquid-vapor coexistence. A review of standard methods of phase equilibria simulations can be found in Ref. 5.

As introduced in Refs. 2 and 3, the activity, z, is defined as

z = Λ-3 exp(βμ)

where Λ is the de Broglie wavelength, β = 1/(kBT) (where kB is Boltzmann's constant), and μ is the chemical potential. It is sometimes more convenient to work with ln z in the simulations and in post-processing.

Phase-coexistence energies were obtained by determining the mean potential energy at a given value of N for an additional 8 billion MC trials. Combining this information with the particle number probability distribution, the mean potential energy of the coexisting phases can be calculated [6].

[1] J. R. Errington, J. Chem. Phys. 118, 9915 (2003).
[2] M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Oxford University Press, New York, 1989).
[3] D. Frenkel and B. Smit, Understanding Molecular Simulation, 2nd ed. (Academic, San Diego, 2002).
[4] J. R. Errington and A. Z. Panagiotopoulos, J. Chem. Phys. 109, 1093 (1998).
[5] A. Z. Panagiotopoulos, J. Phys.: Condens. Matter 12, 25 (2000).
[6] J. R. Errington and V. K. Shen, J. Chem. Phys. 123, 164103 (2005).